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* 1 *
Introduction

Map: I’m going to start by identifying a meta-problem: most of what we 
learn in “statistics” class doesn’t solve our actual problems, which have to 
do with the fact that we don’t know what the true model is—not that we 
don’t know how best to fit it. This book can help with that—but first, we 
need to understand how we can use statistics to learn about the social 
world. I will draw on pragmatism—and falsificationism—to sketch out 
what I think is the most plausible justification for statistical practice.

Statistics and the Social Sciences

What Is Wrong with Statistics

Most of statistics is irrelevant for us. What we need are methods to help 
us adjudicate between substantively different claims about the world. In 
a very few cases, refining the estimates from one model, or from one class 
of models, is relevant to that undertaking. In most cases, it isn’t. Here’s 
an analogy: there’s a lot of criticism of medical science for using up a lot 
of resources (and a lot of monkeys and rabbits) trying to do something we 
know it can’t do—make us live forever. Why do researchers concentrate 
their attention on this impossible project, when there are so many more 
substantively important ones? I don’t deny that this might be where the 
money is, but still, there are all sorts of interesting biochemical questions 
in how you keep a ninety-nine-year-old millionaire spry. But if you look 
worldwide, and not only where the “effective demand” is, you note that 
the major medical problems, in contrast, are simple. They’re things like 
nutrition, exercise, environmental hazards, things we’ve known about for 
years. But those things, simple though they are, are difficult to solve in 
practice. It’s a lot more fun to concentrate on complex problems for which 
we can imagine a magic bullet.

So too with statistical work. Almost all of the discipline of statistics 
is about getting the absolutely best estimates of parameters from true 



[2]	 C ha  p t e r  1

models (which I’ll call “bestimates”). Statisticians will always admit that 
they consider their job only this—to figure out how to estimate parame-
ters given that we already know the most important things about the 
world, namely the model we should be using. (Yes, there is also work on 
model selection that I’ll get to later, and work on diagnostics for having 
the wrong model that I won’t be able to discuss.) Unfortunately, usually, 
if we knew the right model, we wouldn’t bother doing the statistics. The 
problem that we have isn’t getting the bestimates of parameters from true 
models, it’s about not having model results mislead us. Because what we 
need to do is to propose ideas about the social world, and then have the 
world be able to tell us that we’re wrong . . . and having it do this more 
often when we are wrong than when we aren’t.

How do we do this? At a few points in this book, I’ll use a metaphor of 
carpentry. To get truth from data is a craft, and you need to learn your 
craft. And one part of this is knowing when not to get fancy. If you were 
writing a book on how to make a chair, you wouldn’t tell someone to start 
right in after sawing up pieces of wood with 280 grit, extra fine, sand
paper. You’d tell them to first use a rasp, then 80 grit, then 120, then 180, 
then 220, and so on. But most of our statistics books are pushing you right 
to the 280. If you’ve got your piece in that kind of shape, be my guest. But 
if you’re staring at a pile of lumber, read on.

Many readers will object that it simply isn’t true that statisticians 
always assume that you have the right model. In fact, much of the excite-
ment right now involves adopting methods for classes of models, some 
of which don’t even require that the true model be in the set you are ex-
amining (Burnham and Anderson 2004: 276). These approaches can be 
used to select a best model from a set, or to come up with a better esti-
mate of a parameter across models, or to get a better estimate of parame-
ter uncertainty given our model uncertainty. In sociology, this is going 
to be associated with Bayesian statistics, although there are also related 
information-theoretic approaches. The Bayesian notion starts from the 
idea that we are thinking about a range of models, and attempting to 
compare a posteriori to a priori probability distributions—before and 
after we look at the data.

Like almost everyone else, I’ve been enthusiastic about this work (take 
a look at Raftery 1985; Western 1996). But we have to bear in mind that 
even with these criteria, we are only looking at a teeny fraction of all pos-
sible models. (There are some Bayesian statistics that don’t require a set 
of models, but those don’t solve the problem I’m discussing here.) When 
we do model selection or model averaging, we usually have a fixed set 
of possible variables (closer to the order of 10 than that of 100), and we 
usually don’t even look at all possible combinations of variables. And we 
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usually restrict ourselves to a single family of specifications (link func-
tions and error distributions, in the old GLM [General Linear Models] 
lingo).

Now I don’t in any way mean to lessen the importance of this sort of 
work. And I think because of the ease of computerization, we’re going to 
see more and more such exhaustive search through families of models. 
This should, I believe, increasingly be understood as “best practices,” and 
it can be done outside of Bayesian framework to examine the robustness 
of our methods to other sorts of decisions. (For example, in an awesome 
paper recently, Frank et al. [2013] compared their preferred model to all 
possible permutations of all possible collapsings of certain variables to 
choose the best model.) But it doesn’t solve our basic problem, which is 
not being able to be sure we’re somewhere even close to the true model.

You might think that even if it doesn’t solve our biggest problems, at 
least it can’t hurt to have statisticians developing more rigorously defined 
estimates of model parameters. If we’re lucky enough to be close to the 
true model, then our estimates will be way better, and if they aren’t, no 
harm done. But in fact, it is often—though, happily, not invariably—the 
case that the approaches that are best for the perfect model can be worse 
for the wrong model.

When I was in graduate school, there was a lot of dumping on Ordi-
nary Least Squares (OLS) regression. Almost never was it appropriate, we 
thought, and so it was, we concluded, the thing that thoughtless people 
would do and really, the smartest people wouldn’t be caught dead within 
miles from a linear model anyway. We loved to list the assumptions of re-
gression analysis, thereby (we thought) demonstrating how implausible 
it was to believe the results.

I once had two motorcycles. One was a truly drop dead gorgeous, 850 
cc parallel twin Norton Commando, the last of the kick start only big 
British twins, with separate motor, gearbox, and primary chain, and a roar 
that was like music. The other was a Honda CB 400 T2—boring, straight 
ahead, what at the time was jokingly called a UJM—a “Universal Japanese 
Motorcycle.” No character whatsoever.

I knew nearly every inch of that Commando—from stripping it down 
to replace parts, from poring over exploded parts diagrams to figure out 
what incredibly weird special wrench might be needed to get at some 
insignificant part. And my wife never worried about the danger of me 
having a somewhat antiquated motorcycle when we had young children. 
The worst that happened was that sometimes I’d scrape my knuckles on a 
particularly stuck nut. Because it basically stayed in the garage, sheltering 
a pool of oil on the floor, while I worked on it.

The Honda, on the other hand, was very boring. You just pressed a but-
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ton, it started, you put it in gear, it went forward, until you got where you 
were going and turned it off.1 If I needed to make an impression, I’d fire 
up the Norton. But if I needed to be somewhere “right now,” I’d jump on 
the Honda. OLS regression is like that UJM. Easy to scorn, hard to appre-
ciate—until you really need something to get done.

Proof by Anecdote

I find motorcycle metaphors pretty convincing. But if you don’t, here’s a 
simple example from some actual data, coming from the American Na-
tional Election Study (ANES) from 1976. Let’s say that you were inter-
ested in consciousness raising at around this time, and you’re wondering 
whether the parties’ different stances on women’s issues made some sort 
of difference in voting behavior, so you look at congressional voting as 
a simple dichotomy, with 1 = Republican and 0 = Democrat. You’re inter-
ested in the gender difference primarily, but with the idea that education 
may also make a difference. So you start out with a normal OLS regres-
sion. And we get what is in table 1.1 as model 1 (the R code is R1.1).

Gender isn’t significant—there goes that theory—but education is. 
That’s a finding! You write up a nice paper for submission, and show it to 
a statistician friend, very interested that those with more education are 
more likely to vote Republican. He smiles, and says that makes a lot of 
sense given that education would make people better able to understand 
the economic issues at hand (I think he is a Republican), but he tells you 
that you have made a major error. Your dependent variable is a dichotomy, 
and so you have run the wrong model. You need to instead use a logistic 
regression. He gives you the manual.

You go back, and re-run it as model 2. You know enough not to make 
the mistake of thinking that your coefficients from model 1 and model 2 
are directly comparable. You note, to your satisfaction, that your basic 
findings are the same: the gender coefficient is around half its standard 
error, and the education coefficient around four times its standard error. 
So you add this to your paper, and go show it to an even more sophisti-
cated statistician friend, and he says that your results make a lot of sense 
(I think he too is a Republican) but that you’ve made a methodologi-
cal error. Actually, your cases are not statistically independent. ANES 
samples congressional districts,2 and persons in the same congressional 

1. In fact, it was so boring that I attached deer antlers to the front for a while, until a 
helpful highway patrolman told me that if I ever was in an accident, and an antler actu-
ally impaled a pedestrian, unlikely though that was, I would certainly get the electric 
chair, and then go straight to hell.
2. Actually in the 1976 ANES, the sampling units were not congressional districts but 
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district have a non-independent chance of getting in the sample. This is 
especially weighty because that means that they are voting for the same 
congressperson. “What do I do?” you ask, befuddled. He says, well, a ro-
bust standard error model could help with the non-independence of ob-
servations, but the “common congressperson” issue suggests that the best 
way is to add a random intercept at the district level.

So you take a minicourse on mixed models, and finally, you are able to 
fit what is in model 3: a hierarchical generalized linear model (HGLM). 
Your statistician friend (some friend!) was right—your coefficient for edu-
cation has changed a little bit, and now its standard error is a bit bigger. 
But your results are all good! Pretty robust! But then you show it to me. It 
doesn’t make sense to me that education would increase Republican vote 
by making people smarter (strike one) or by helping you understand eco-
nomic issues (strike two). I tell you that I bet the problem is that educated 
people tend to be richer, not smarter. Your problem is a misspecification 
one, not a statistical one.

I have the data and quickly run an OLS and toss income in the mix 

looped across them; in 1978 they were congressional districts. But your statistician 
friend is a bit foggy on these details. . . . 

Table 1.1. Proof by Anecdote

Model 1 Model 2 Model 3 Model 4 Model 5

Type of Model OLS LOGISTIC HGLM OLS HGLM

GENDER −.017 −.071 −.011 −.039 −.107
(.031) (.130) (.152) (.033) (.164)

EDUCATION −.083*** −.348*** −.383*** −.029 −.166
(.018) (.078) (.093) (.022) (.108)

CONSTANT .620 .497 .734 .633 .808

RANDOM 
EFFECTS 
VARIANCE 1.588 1.552

SECRET −.081*** −.352**
(.021) (.111)

R2 .021 .028
AIC 1374.9 1264.5 1112.6

N = 1088; Number of districts = 117; *** p < .001; ** p < .01
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(model 4). The row marked “SECRET” is the income measure (I didn’t 
want you to guess where this is going—but you probably did anyway). Oh 
no! Now your education coefficient has been reduced to a thirteenth of its 
original size! It really looks like it’s income, and not education, that pre-
dicts voting. Your paper may need to go right in the trash. “Hold on!” you 
think. “Steady now. None of these numbers are right. I need to run a binary 
logistic HGLM model instead! That might be the ticket and save my find-
ing!” So you do model 5. And it basically tells you the exact same thing.

At this point, you are seriously thinking about murdering your various 
statistician friends. But it’s not their fault. They did their jobs. But never 
send in a statistician to do a sociologist’s job. They’re only able to help you 
get bestimates of the right parameters. But you don’t know what they are. 
The lesson—I know you get it, but it needs to stick—is that it rarely makes 
any sense to spend a lot of time worrying about the bells and whistles, 
being like the fool mentioned by Denis Diderot, who was afraid of piss-
ing in the ocean because he didn’t want to contribute to drowning some-
one. Worry about the omitted variables. That’s what’s really drowning you.

So moving away from OLS might be important for you, but in most 
cases, that isn’t your problem. Indeed, OLS turns out to be pretty robust 
to violations of its assumptions. Sure, it doesn’t give you the best esti-
mates, but it doesn’t go bonkers when you have restricted count data, 
even (often) just 0s and 1s. Further, and more important, it has a close 
relation to some model-independent characteristics of the data. You can 
interpret a “slope” coefficient as some sort of estimate of a causal effect, if 
you really want to . . . or you can see it as a re-scaled partial correlation co-
efficient. And those descriptive interpretations can come in handy. Most 
methodologists these days are going to tell you to work closer and closer 
to a behavioral model. And I’m going to say that’s one half of the story. 
Just like some politicians will say, “Work toward peace, prepare for war,” 
I will say, “Work toward models, but prepare for description.” And so I’m 
going to take a moment to lay out the theory of the use of data that guides 
the current work. But first, a little terminology.

Models, Measures, and Description

We’re often a bit casual in talking about “models,” “measures” and so on—
statisticians aren’t, and I think we should follow them here. A model is a 
statement about the real world that has testable implications: it can be a 
set of statements about independencies—certain variables can be treated 
as having no intrinsic association in the population—as in Leo Good-
man’s loglinear system. Or it can be a statement about mechanisms or 
processes—either causal pathways, or behavioral patterns.



	 Introduction	 [7]

Models usually have parameters in them. If the model is correct, these 
parameters may have a “real worldly” interpretation. For example, one of 
them might indicate the probability that persons of a certain type will 
do a certain type of thing. They might indicate the “elasticity” of an ex-
change between two types of resource. But they don’t always need to have 
a direct real-world analogue. And our estimates of these parameters can be 
useful even when they aren’t really very interpretable. In many cases, we 
use as a rule-of-thumb the statistical test of whether a parameter is likely 
non-zero in the population as a way of constraining the stories we tell 
about data. This approach has come in for a lot of hard knocks recently, 
perhaps deservedly, but I’ll defend it below. For now, the point is that not 
all parameters have to be real-world interpretable for us to do something 
with them.

Let’s go on and make a distinction between the estimate of a real-world 
parameter (should there be any) and measures that (as said in TTM) I’ll 
use to refer to a process whereby we interact with the units of measure-
ment (individually and singly, one might say) and walk away with infor-
mation. Finally, when possible, we’ll try to distinguish model parameters 
(and measurements) from descriptive statistics. While this distinction may 
get fuzzy in a few cases, the key is that descriptions are ways of summa-
rizing information in a set of data that are model-independent. No matter 
what is going on in the world, a mean is a mean.3 Not to be intentionally 
confusing, but what a mean means stays the same. In contrast, a parame-
ter in a complex model (like a structural equation measurement model) 
has no meaning if the model is seriously off.

That’s the nature of good description. What you do is figure out ways 
of summarizing your data to simplify it, give you a handle on it, and the 
best descriptive methods structure the data to help you understand some 
especially useful aspects, ones that have to do with the nature of your data 
and the nature of your questions, but still without making use of particu-
lar assumptions about the world. When it comes to continuous data ex-
pressed in a correlation matrix (which is what OLS among others deals 
with), conventional factor analysis is a classic descriptive approach.

3. If you’re a sophist, you’ll immediately try to come up with reasons why this isn’t so, 
and you’ll be wrong. If you have a single distribution of a continuous variable, with 
N observations, there are N moments to that distribution. The mean is the first, the 
standard deviation the second, and so on. If you use all of them, you recreate the whole 
distribution. The first two moments adequately characterize some distributions; for a 
wider family, you need the first four, but every distribution can be characterized with 
all of them. The best that you can do, oh beloved sophist, is to argue that there is a con-
tinuum, with some quantities useful for practically any model, and others useful for 
very few. I’ll accept that, and it doesn’t undermine my point.
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Now when I was in graduate school, factor analysis was the one 
thing we despised even more than OLS. It was, as Mike Hout called it, 
“voodoo”—magic, in contrast to a theoretically informed model. That’s 
because something always came out, and, as I’ll argue in chapter 9, when 
something “always comes out” it’s usually very bad. But in contrast to 
other techniques that always give an interpretable result, factor analysis 
turns out to be pretty robust. Is it perfect? Of course not. Should you ac-
cept it as a model of the data? Of course not—because it isn’t a model. It’s 
a description, a reduction of the data. And chances are, it’s going to point 
out something about the nature of the data you have.

Now as Duncan (1984b, c) emphasized, knowing a correlation matrix 
doesn’t always help you. The pattern of covariation in a set of data, he said, 
is far from a reliable guide to the structural parameters that should ex-
plain the data. But most of our methods are based on the same fundamen-
tal mathematical technique of singular value decomposition. This is a way 
of breaking up a data matrix into row and column spaces. As Breiger and 
Melamed (2014) have demonstrated, most of our techniques basically take 
these results and rescale them (like correspondence analysis) or project 
them (like regression). So our common linear model, rather than being 
an alternative to description, can be understood as a particular projection 
of the description for certain analytic purposes.

Many methodologists think that the best approach is one that pre-
cisely translates a set of behavioral assumptions into a model with 
parameters that quantify the linkages in the model. To them, the fact that 
OLS is close to description shows how primitive it is. I’m going to argue 
that we’re best off attempting to use our data to eliminate theories using 
models that are actually as close as possible to description. So it’s time I 
laid out the approach to statistics that guides this work.

What Is, What Are, and What Should Be, Statistics?

It seems that there isn’t real agreement as to where the word “statistics” 
comes from, and it currently is ambiguous. We use it both to mean the 
raw materials—the numbers—that we analyze, as well as the set of tools 
that we use to analyze them. It seems pretty certain that the word first re-
ferred only to the former; it is also pretty certain that it comes from the 
root of words for “state,” but it shares the ambiguity of that word itself, 
for it appears that it originally meant “those numbers that tell us the state 
of the state,” that is, the condition of the government (see Pearson 1978 
[1921–1933]; Stigler 1986).

But what we think of as statistics as a field of applied mathematics 
came from work that demonstrated that a finite, indeed, rather small, 
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sample could be used to estimate (1) the population value of some nu-
merical characterization (such as average height); (2) the population vari-
ance; (3) the likely error of each of these estimates. That’s still the heart of 
statistics—what we call the “central limit theorem.” It isn’t the limit that’s 
“central,” it’s the theorem. It’s the basis for what we think of as statistics. 
This enterprise of statistics, then, is all about inference to populations 
from samples.

This emphasis on inference continued as statistics began to move away 
from descriptions (like a mean or a correlation coefficient) to what were 
increasingly interpreted as models (like a set of slope coefficients). But 
this opened up a new form of error. There are three ways that a slope co-
efficient can be wrong. The first is that we’ve made a mistake of calculation. 
These days, this usually means a programming error. The second is that 
while our calculation is correct, the value in the sample isn’t the same as 
that in the population, and it’s the latter that we’re trying to get at. If we 
had a complete sample, we’d get the right value. This, then, is a mistake of 
inference. The third is that there’s nothing wrong with our calculation and 
inference, but our model is wrong. We have a mistake of interrogation—it’s 
not that we have the wrong answer, but that we asked the world the wrong 
question. While we can make errors of calculation or of inference for de-
scriptive statistics, errors of interrogation only arise when we move from 
description to models.

Our basic problem is that statistics, as generally taught, has relatively 
little to say about our problems of interrogation. We can’t ask for the right 
estimates until we know what is going on, or at least, what might be going 
on—and until we actually have measures of these factors. So how can we 
proceed? We’re often told that we should be using our data to test theo-
ries. I’m pretty sure that that approach hasn’t worked out too well. In-
stead, I think we should start with a rudimentary theory of social science 
based on pragmatism (especially that of C. S. Peirce and John Dewey). If 
you aren’t interested, feel free to skip to the next section. But I think we 
can derive a far more coherent theory of the relation of data to knowledge 
than we currently have, and one that will better help us with our actual 
practice, than our current orthodoxy. To do this, you need to imagine that 
there is something you are interested in, something that you don’t know 
about. That’s step one. Step two is that you think about the set of possible 
plausible explanations (this notion was famously laid out by the great ge-
ographer Chamberlain 1965 [1890]).

When we assemble this set of possibilities, you don’t allow something 
that you call “theory” to lead you to ignore hypotheses or interpretations 
that draw some interest from competent social scientists. That is, if by 
“theory” you mean “what we already know,” like one might talk about 
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“plate tectonic theory,” then sure, your work should be theoretically in-
formed. But if by “theory” you mean “my presuppositions” or “my claims,” 
then any analysis that assumes it is a waste of all our time. Don’t let any-
one cow you into thinking that he has some special reason why he gets 
to ignore what he wants to ignore (we’ll see examples of how this leads to 
bad practice in chapter 9).

This notion that you start not with your theory, but with the compet-
ing notions of a community of inquiry, doesn’t quite fit conventional ways 
of thinking, though it is compatible with the neo-Chamberlainism of 
Anderson (2012). The pragmatist conception, however, differs even more 
fundamentally from our current vision of statistics.4 In the conventional 
philosophy of science—one that lies at the bottom of our frequentist in-
terpretations of most of our statistical practice—you start from scratch 
every time. You have a model, a theory of reality, and you want to test it. 
That means you have a billion things that you test all at the same time. 
It means you aren’t just asking, “Does income affect vote?,” but simul-
taneously, “Does this measure income? Is the central limit theorem ap-
plicable? Do other people have consciousness? Am I perhaps a brain in a 
vat?” A weakness in any one of the assumptions that you need to make 
your practice defensible undermines your conclusion.

In the Bayesian version, you try to fold more of your current under-
standings and beliefs into how you interpret the evidence the world gives 
you. The pragmatist idea is somewhat different. The consistent Bayesian 
will allow you to assign a .9 probability to the model that says that the 
presence of capitalist relations of production leads to greater psycho-
logical health than do socialist relations of production if you really, really, 
really, really, really, really, really, really, really, believe it.5 The pragmatists, 
in contrast, understood science as the efforts of a community, and argued 
that no one could unilaterally declare something likely or unlikely.

Further, in the pragmatist conception, rather than start from the 
ground and build up, we start from where we are, and where we are is 
with what we, as regular people, already think that we know. Maybe you 
can’t prove that any of this is true knowledge. Maybe we are hanging in 
the air without a foundation, but, still, that’s where we are. Whether what 
is in our heads be philosophically justifiable or not, either way, science can 

4. You might wonder why, given this pragmatist grounding, I don’t focus on solving 
practical problems. I don’t want to get side-tracked, but the simple story is that too 
often, our problems are due to other people. . . . 
5. I recognize that there are now some non-subjectivist Bayesians, or so they think (with 
high subjective confidence). But they still accept the notion that a model has a proba-
bility. That actually isn’t an easy notion to explain unless you are a subjectivist or believe 
that there are a large set of parallel universes constantly splitting from one another.
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make it better—if we want it to. Some of our everyday knowledge might 
be wrong, but if it doesn’t matter, let it be. If something matters, and our 
existing knowledge isn’t good enough—that’s when we say, “Stand back, 
I’m going to try science.”

That means that if a statistical analysis improves on what we think we 
know from everyday life, we want to take that evidence seriously . . . even 
if our quantifications show that there’s lots of imprecision. Our goal is to 
use the power of our data and the rigor of our methods to exert leverage 
on this process of deciding what interpretation to accept. How should we 
do that?

I propose that we adopt a strictly falsificationist ideal for our practice. 
This is an old-fashioned idea, and, even worse, associated with a stodgy 
liberal German philosopher of science, Karl Popper (1959 [1934]). There 
are lots of good critiques of his theory, and of falsificationism in general. 
But that isn’t determinative—maybe it isn’t a good philosophy of science. 
But it is good practice for our field. We should be using statistics not to 
estimate real world parameters, but to force us away from interpretations 
of the world that are inconsistent with the body of evidence as it stands.

Of the possible ways of formalizing this connection, falsification is best 
at working with our current state of statistics. Imagine that the space of 
all possible explanations of some phenomenon is a plane, like that drawn 
in figure 1.1, left. Conventional statistics work by us coming up with a 
single model. We try to estimate the parameters, and the better the esti-
mates (the smaller the radius around the star, impressionistically speak-
ing), the better. But if the truth is far away from where we even are, we 
don’t get much traction on it. We’re just tightening a lasso on a steer who’s 
already got clear away.

Now you might respond that conventional methods are falsification-
ist. We’re rejecting the null hypothesis, right? Didn’t we learn that that’s 
all we can do—falsify models? Well, not quite. Although some loglinear 
modelers still reject whole models, most of us don’t. We might reject one 
parameter in a model, but we don’t use that to say, “You know, maybe the 
whole idea of regression isn’t true here.” You might also say, well, Bayesian 

Figure 1.1. Conventional and Bayesian Approaches to the Use of Statistics
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methods get us past this “choke chain on nothing” view of statistics. And 
there’s going to be a lot of promise in Bayesian methods, not only in terms 
of getting better maximum likelihood estimates, but in widening our 
view of the world. Bayesian methods can take into account a large class of 
possible models, and use this to choose a best model, or to incorporate our 
model uncertainty into our parameter estimates. (To be fair, information-
theory based methods can do all of this as well, without leaving the Fish-
erian approach to statistics I’ll advocate in chapter 5.)

Bayesian methods, however, also only explore a small fraction of this 
space. Even in some of the wilder approaches that try to examine multiple 
link functions as well as selections of variables, they are limited to a rela-
tively small set of variables, and they certainly don’t include the “unknown 
unknowns.” (See fig. 1.1, right.) Although many Bayesian approaches can 
be used in service of the falsificationist approach I’m advocating here, I’m 
actually not going to discuss them here, for a simple reason: while Bayes-
ianism as a philosophy is pretty old, most specific techniques are too new. 
You should be excited about the increasing ease of doing what are called 
“fully Bayesian” techniques that allow for taking one portion of our uncer-
tainty—our distribution of belief across a set of models, both a priori and 
a posteriori—into account when we estimate parameters and their stan-
dard errors, as well as approaches that suggest how to trade off between 
fit and parsimony to choose reasonable models. But not only are none of 
these techniques going to offer us a silver bullet,6 most are simply too new 
for us to have a “feel” for how they work in practice. Given that your tools 
will all be imperfect, it’s better to use one whose tendencies and biases 
you understand than one you don’t . . . of course, while you are also trying 
to develop new ones.

What’s most important, then, isn’t any particular number that you cre-
ate, but the logic of your exploration of a set of substantively important 
alternative models. Rejecting false models is good, but since there are an 
infinite number of wrong ideas, we might just bounce from one to an-
other. So we want to see whether, as we move away from a bad model to a 
different one, we are increasing our inferential scope. If so, we have reason 
to think that we’re moving toward better ideas by throwing out the worse 
ones. To do this, all we really need are methods that have a better-than-

6. We can never take into account our true uncertainty, because the realm of possible 
models is actually an infinite one, and not restricted to the handful of predictors we 
happen to be looking at. Our biggest problems aren’t about estimation, they’re about 
specification, and what we need is rarely going to be solved by new statistics—rather, it 
will be solved by industrious workers applying the techniques they understand to get a 
good grasp of what’s going on in their data.
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random chance of leading us to give up on a false theory in favor of a dif-
ferent one that is more likely to be true.

And the cool thing about this is that we can actually say something 
useful even when there are “unknown unknowns”—relevant factors that 
affect our findings that we don’t know about—so long as we understand 
something about the other possible options. So the way this falsification-
ist approach works is that we start with a set of possible explanations, and 
try to ask a question, the answer to which, divides up that space (see fig. 
1.2, left). While this is classically called a “critical test,” the point isn’t that 
it’s a one-shot, never-think-about-it-again answer. It’s that it shifts the 
weight of the evidence from one possibility to another. Once we do that, 
we’re going to want to see if we can further narrow down our options, by 
asking other relevant questions (see fig. 1.2, right). We might end up un-
able to narrow things down to more than a large section of this space. But 
this space has two important characteristics. First, it includes one of the 
three competing theories. And it includes reality.

This is, it should be emphasized, an ideal. We’d like to push one whole 
side of this space into “nope!” Often we can’t, and so what we are instead 
doing is assigning some sort of credence to various hypotheses—shifting 
the weight of the evidence back and forth. That sort of endeavor is mathe-
matized in various information criteria, but I’m arguing that we need to 
be doing something like that as a community of investigators, even if we 
can’t mathematize the answer (for example, when the evidence for one 
theory comes from ethnographies, and that for another from statistics). 
There aren’t easy answers. But there might be good ones. Let’s translate 
this to practice.

Enter Statistics

What we want, then, is to use statistical practice to help us in this goal. 
Let’s take the example of studying individual political behavior with data 
on votes. If you regress political vote on income and education, you can, 
of course, be trying to get a sense of what the causal effect of education is 

Figure 1.2. The Falsificationist Use of Statistics
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on vote. I have a hard time understanding what the hell that could pos-
sibly mean, and even if there was such a thing, I doubt there’s any way of 
getting at it using these sorts of approaches. Many stats books would say, 
then go do something else. I disagree. Regression results aren’t useful be-
cause they capture the actual real world causal parameters . . . but because 
they have descriptive utility for the project of adjudication.

Let’s go back to our example of the person who noticed that Ameri-
cans with more education are more likely to vote Republican than those 
with less education. Our researcher might have an explanation, namely 
that those with education are more likely to have an accurate grasp of the 
complexities of economic policy, and the need for responsible budgeting. 
As this set of economic policies is (rightly or wrongly) more strongly as-
sociated with the Republican party, those with more education are more 
likely to support the Republicans.

That’s a story. Now you might think about education as a “cause” and 
something that might have “confounders” or all that sort of thing. And 
you could work very hard at establishing the correct estimate of this 
causal parameter. But you don’t have to. You could stick with this as a 
comparison—those of more versus less education. You might notice that 
the logic of this person’s claim implies that if you were, say, to stratify 
your sample by income level, within every income level, those with more 
education should be more likely to vote Republican. That is, there’s no rea-
son why his explanation wouldn’t continue to hold. So let’s say that you 
do this—you divide up income into deciles, and you look at the difference 
in Republican vote between those with more and those with less educa-
tion within each decile. As you might guess from before, this will actually 
lead the relation to disappear or reverse; those with more education, in 
any income category, will vote less Republican!

We’re going to throw out that first guy’s story. And we’re going to have 
an understanding of why it should be thrown out—in our sample, educa-
tion is associated with income, and those with higher household income 
are more likely to vote Republican. Said somewhat differently, the relation 
between education and vote is very different from the relation between 
education-conditional-on-income and vote. You don’t know much about 
American politics unless you understand both of these.

So we could split the sample into deciles like I said here, but if we found 
that in all deciles, the relationship between education and vote was rela-
tively similar, then we might make a single number that expresses this re-
lation, instead of ten different numbers. That’s what a regression slope is. 
It’s a way of taking a complex data space, rotating it so that we can ignore 
trivial dimensions, and then projecting it in such a way that it answers a 
question about a complex comparison.
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We do a regression like this when we are going to rely upon the assump-
tion that there is a simple relationship between subcategories formed by 
the cross-classification of many variables. We do that—and we do it jus-
tifiably—when some of the following are true: 1) in the past, we’ve found 
that sort of simple relationship; 2) we don’t really have enough data to do 
anything else; 3) we don’t really care all that much about our findings—
we won’t be in deep trouble if we’re wrong about this. (This might seem 
shockingly casual, but I think we’ll see that as we do serious research, we 
often have to budget our forces reasonably—we can’t chase down every 
possibility fully.) Of course, if the comparison we’re trying to get out of 
our regression is too complex, there’s indeed a good chance that our re-
gression won’t give us what we want. One assumption of a linear relation 
is pretty innocuous. Add a second, and an assumption of independence 
of the two predictors, and it gets a bit shaky. Add a dozen, and you’re talk-
ing Vegas odds. In general, we want our models to do two things: first, let 
us see patterns in the data that are relatively robust, and second, rule out 
some interpretations of those patterns.

Now of course, there could be a reason why our first person’s theory 
turns out to still be true. It could be that there’s another variable that we 
can use to stratify further that reverses our conclusions. Or it could be 
there’s a really good reason, when we think about it carefully, that the per-
son could still be right, though maybe we can’t show it with these data. 
But the burden of proof has certainly shifted. Until this person comes 
back with something really strong, that story is out. Do we understand 
the association between education and vote? We don’t. But we won’t learn 
anything by just assuming that it causes vote in some mysterious way, and 
then trying to estimate the strength of this causal pathway.

In sum, statistics aren’t there to estimate the parameters from your 
story. They’re there to eliminate stories, to falsify some claims. We want to 
understand the possible explanations for simple descriptive patterns, and 
then bring data to bear on them to so that we can throw some of those 
out. And the task of statistics is to make sure that we’re more likely to 
eliminate the interpretations that should be eliminated than those that 
shouldn’t. If what we’re left with really looks like it is pretty close to the 
“true” story, then let’s break out the champagne.

Let me give an “existence proof” of the plausibility of this approach in 
the form of a true story. When my first book on Social Structures came out, 
it was given a very thorough, but ultimately negative, review by Neil Gross 
in Contemporary Sociology.7 How delighted I was, then, to find that Gross—
who is not an expert statistician—was writing a book on an obviously im-

7. “‘Lack of insight!’ I’ll lack-of-insight him, I will!” I went around muttering for a week.
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possible question, “Why are professors liberal?” All I had to do was hang 
back, watch him fall flat on his face, and then step daintly over.

Actually, he pulled it off (2013). How? First, he doesn’t try to hang every-
thing on a single coefficient in a single model. Instead, he starts with a ro-
bust finding—that professors are disproportionately liberal—and a small 
set of well-formulated alternative explanations of this fact: self-selection, 
discouragement of others, capture, and conversion. He judiciously goes 
over the different bits of evidence that we have, doing multivariate ana-
lyses where he can find something relatively robust, and continually as-
sessing where the balance of the evidence lies. And, most important, 
while doing this, he attempts to root his investigations in what we can 
figure out about the concrete processes whereby careers unfold over the 
lifecourse. He never rests on one clever silver bullet to come up with “the” 
right estimate of a parameter from a simplified model.

To conclude, we’ve been a little bit too scared of ambiguity. Because 
our statistics would be totally defensible if the world was such-and-such 
a way, we’ve been tempted to pretend that it is in fact that way (cf. Giger-
enzer 1991).8 I’m saying that if we are willing to stop pretending, we have 
a different way of working, one that involves trying to learn from data by 
pursuing different interpretations and conducting multiple tests. And, 
sadly, many of us have been taught that this is the worst thing we can do!

Overfitting and Learning from Data

When I was in graduate school, we were severely warned against “data 
mining,” which meant trawling through our data, looking for interesting 
things. The reason for this is that all the statistics we were learning re-
quired that one first (without looking at the data) construct a hypothesis, 
and then test it. If you didn’t “call it in the air,” the statistics were mean-
ingless. If you really needed to look at your data first, you could have one 
peek, but only if you split your data, and peeked at one half, and then 
tested on the other.

In case you’re rusty on this, and because sociologists can be casual in 
their language, let’s review our basic terms. Fit is how close our predic-
tions are to the data we used. Model selection is about choosing which 
model to believe. Often the best model is not the best-fitting one. Why? 

8. I often hear the response, “But if you can think it, you can model it.” Indeed, if you 
devote five minutes to thinking about something about the social world, you should 
be able to write down a fitable model for it. But if you spend two hours really thinking 
about it, you should be able to figure out why the model isn’t right. And if you spend 
eight hours, you should be able to figure out why you can’t do a plausible model that 
doesn’t assume almost everything you’re supposedly trying to find out.
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Because the one that stretches itself to best fit these data might be ter-
rible on the next set of data. It’s trained itself to fight the last war, as it 
were. Of equally well-fitting models, we tend to prefer those with fewer 
parameters, not because we arbitrarily prefer simplicity, but because we 
think it’s less likely to have parameters that only fit the particularities of 
this sample. We use the combination of fit and parsimony in the quest of 
model selection—our decision as to what we think holds in the popula-
tion from which we’ve sampled. Fit, then, is about this sample, and when 
we are interested in inferences, we have to control our desire to fit. If we 
spend too much time looking at our data, we will increase our fit—but 
decrease our capacity to make inferences, because we choose the wrong 
model for the population. Hence the rule: don’t choose your models based 
on what the data tell you! It’s a basic notion that goes back to Francis 
Bacon.9

That follows logically from the basic axioms of our statistics. But no 
one I know who went on to be a skilled data analyst did this. Guiltily, 
we pored over our data, looking for what the hell was going on. Yes, that 
means we sometimes “over-fit”—that is, we came up with “false positives” 
where it looked like our theory was true, but it really was just the “good” 
luck due to the sampling fluctuations in this data set. . . . in next year’s, 
say, we wouldn’t come up with the same finding.10 But we over-fit a lot less 
than you would think. In fact, I think those of us who combed through the 
data had fewer false positives than the rigid “testers.” Remember that if 
your statistics teacher urges you to take a more orthodox approach, that’s 
because in his class of 40, he is fine with the idea that two or three of you 
will go to press with a totally wrong finding just due to sampling error. You 
do things his way, that’s as good as you can expect. You look more closely, 
and I think you’re less likely to be one of those false positives.

Here’s why. The classic “tester” has a finding she wants to be true. Let’s 
say that she wants to argue against those who say that “feminism” (in 
the sense of being against traditional gender roles) is intrinsically a pro-

9. “In forming our axioms from induction, we must examine and try, whether the axiom 
we derive, be only fitted and calculated for the particular instances from which it is de-
duced, or whether it be more extensive and general. If it be the latter, we must observe, 
whether it confirm its own extent and generality by giving surety, as it were, in pointing 
out new particulars, so that we may neither stop at actual discoveries nor with a care-
less grasp catch at shadows and abstract forms instead of substances of a determinate 
nature and as soon as we act thus well authorized hope may with reason be said to beam 
upon us” (Novum Organum, 106; 1901 [1620]: 128). Thus statisticians correctly caution us 
against overfitting.
10. Now even then, truth be told, there were some suitable ways of determining the sta-
tistical significance of a parameter when one conducts multiple tests and so on, and 
now it’s more common for people to carry these out.
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woman position. So she takes data from a survey (say the General Social 
Survey [GSS]) and shows that men and women don’t differ significantly 
in their support for less traditional gender roles for women (and indeed, 
that’s what you’d get, at least circa 1993 when I last did this). But a critic 
might say, “Maybe this is due to education differences between men and 
women.” Sweating, our researcher adds “education” as a control, crosses 
her fingers, and . . . ah! No change. The gender parameter is still insignifi-
cant. Thank God.

What this approach (theory testing) is doing is preventing our re-
searcher from using the data to learn much. She’s so intent on preserving 
her own theory, that she can’t see what she didn’t already think of . . . un-
less it was suggested by someone else. And even then, rather than push 
us to be increasingly clear about the contours of the processes or patterns 
we are trying to uncover, this way of prompting research blurs them. The 
game she plays is that she tries to hang onto her finding, while doing jus-
tice to everyone else’s idea by tossing in more and more controls. All these 
controls make it hard to know what the hell we are doing. (We’ll return to 
these issues in chapter 4.)

And what this sort of approach encourages is that we stop our investi-
gation at a convenient place. That’s not a “conservative” strategy at all! A 
conservative strategy is one where we take our current leading interpre-
tation (even if it’s “nothing is going on”) and see whether it implies any 
other testable hypotheses. Our researcher won’t stop with just finding an 
insignificant gender coefficient, because she’s trying to paint a picture of 
what men and women are like. And then she’ll think, “Well, if men and 
women really are no different, if I split the sample by sex, within each 
group, all the predictors should have the same coefficients.” And she’ll 
do that and find that the education coefficient is the same for both men 
and women. But if she throws in a measure of income, suddenly, men and 
women aren’t the same.

Why not? Now our researcher isn’t interested in testing, but learning. 
Hmmm. . . . that measure of income was total household income. Maybe it 
matters whose income it is. What if I look only at married people here, and 
only at women who have jobs, and men whose wives have jobs, and break 
up the income into two portions, one, her income, and the other his. Guess 
what jumps out at you? Every dollar that the woman makes predicts de-
creased traditionalism on her part. Every dollar that the man makes pre-
dicts increased traditionalism on her part.

Don’t stop here. Is it the dollars, the percentage she contributes, or just 
the fact of working, that is the best predictor? Can we do the model sepa-
rately by year? Are the parameters changing? And so on. When you’re 
done with this, you’re more likely to have a true finding, despite the “data 
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mining,” than if you tested. Why? Because you follow the trail pointed to 
by a working hypothesis, and you follow it until the trail dissolves. Every-
thing seems to be coming together, and that implies you should see X . . . 
and there’s no X. So you have to revise your working hypothesis and go on. 
That’s what we call learning. In other words, we put robustness (the same 
finding appears when we do things differently) and internal validity (the 
findings all support one another in interpretation) above that magical 
* sign that indicates statistical significance.

Further, this approach helps you remember what you have—cases, 
usually people. Instead of jumping to test an abstract theory, you start 
thinking concretely. It’s a mystery you need to solve, but like a good de-
tective, you want to determine your suspects before you start worrying 
about their motives. Who is driving my finding? Who has high values on 
my key variables? Who has low? Is the finding driven more by lows or 
highs, or both?

Finally, if you’re still queasy about this idea of really plumbing your 
data, because your statistics teacher has drummed into your head that 
only cheaters look at the data before conducting tests, ask your teacher 
if the entire scientific community should do only one test for each research 
question. Presumably, she or he will say absolutely not. We should use the 
results of past research to come up with new hypotheses and test them. 
Now ask why you can’t do that on the basis of your own past results. Why 
is your p-value wrong when you pursue the logical next step, when the 
p-value of the person in the office next door isn’t?

Science does, just like the squares will teach you, work by constructing 
hypotheses. But, as I said in TTM, this is something you should be doing 
a dozen times a week. Otherwise, you just make the rest of us work through 
the implications of your claims. And that slows us all down. If the scien-
tific community as a whole can do it, you can try to do it too.

Standards of Proof

There’s one last issue about how we compare our explanations, which has 
to do with our standards of evidence. I think we need to understand that 
different questions, and different comparisons, require different stan-
dards. We usually first think about this when we face the problem that 
classical statistics is able only to reject a null hypothesis—not to estab-
lish your own. The null hypothesis is something boring and dumb, like 
“everything is completely random” or “this variable doesn’t predict that 
one at all!” or “maybe we just pulled a weird sample.” In the rare chance 
that we test our own theory, as opposed to the null, we want to make it 
easier to reject. That’s because it’s a bit unfair to imply that you are right 
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simply because you can stump the chump. That doesn’t establish which of 
the infinite number of other hypotheses is worth believing in. It’s sort of 
like Albert Einstein claiming he’s right, because he’s shown that Mortimer 
Snerd is wrong.11

Approaches that look at the weight of evidence across a class of models 
seem a lot better: they can include a null model, but aren’t restricted to 
this. But they come with their own problems; such equal weight across all 
models isn’t always what we want, because we can’t always determine the 
proper set of possible explanations, and how we populate this set influ-
ences our conclusions (I’ll return to this shortly). Instead of looking for a 
general numerical solution to this problem, we need to think about the 
different types of claims we might be investigating.

Here, for want of a better term, I’m going to borrow a notion from 
Boltanski and Thénevot (2006 [1991]) and say that what researchers are 
trying to do with their statistics is to “qualify” something in the world. 
For example, they may say that employers discriminate against African-
Americans. If successful, the admittedly obscure object “employers” now 
has a new quality—discriminatory. Others may attempt to use evidence to 
prevent or remove this qualification.

Here we can draw upon a different way that we have learned to think 
about this process of qualification, one coming from our legal system.12 
First, let’s consider what I will call the criminal understanding of the rela-
tion between claim and evidence. This is an asymmetric understanding, 
where the burden of proof is against the claims-maker. Such asymmetry 
makes sense in some settings: it makes sense for criminal trials, given the 
asymmetry between a state and a citizen. The p-value test and the 95% 
confidence interval are our “beyond a reasonable doubt.” When is this ap-
proach appropriate for social science? Perhaps when there is a single con-
tending qualifier of the world (that is, someone who says, “the world is 
like this”) and a single world to be qualified, where we want desperately to 
avoid being wrong, but don’t particularly mind not being right. And when 
might that be? Very often, when someone is making a claim to support an 
intervention (e.g., a new policy). The deck should be stacked against her—at 
least, to the extent that her argument is made using statistical reasoning.

11. Mortimer Snerd was a literal dummy, used by ventriloquist Edgar Bergen. The great 
sociological theorist and grouch Pitrim Sorokin used him as an example of a real idiot. 
Because Sorokin probably listened to Bergen on the radio, I’m not sure whether he knew 
that Snerd was made of wood. If not, who was the real dummy?
12. If you would like some pedigree here, C. S. Peirce proposed just this way of thinking 
about differences between intellectual endeavors and their standards of proof. See “The 
Logic Notebook,” 1985 [1865–1866], Writings, vol. 1, p. 337–350; “The Logic of Science; Or, 
Induction and Hypothesis, Lecture III, Lowell Lectures of 1866,” 1985 [1866]: p. 357–504.
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In contrast is a civil understanding, in which we have a balanced bur-
den, and whichever side is over 50% wins. This arises in law when we have 
not a state against a citizen, but two citizens arguing over where the fence 
line should be. It has to be somewhere, and it would be unfair to imagine 
that whoever was the first to complain should face a higher burden of 
proof. When is this standard of “over 50%” the reasonable one? We might 
at first suspect that it is necessary in conditions where we are oriented by 
a need for practice: where we must do something—to do, or to forebear. 
But in a moment, I’ll try to argue that this isn’t the case; rather, this is 
most useful when we have a problem that is relatively disconnected from 
practice, and where the alternatives are few and data scarce.

For example, historians may have narrowed down their theory of the 
basis of the emerging party system in revolutionary America to two 
general theories. One is that it has to do with, basically, class relations 
(though not everyone uses these terms!). Some elites were tied to land, 
others to commerce; some had an interest in westward expansion, and 
others didn’t. The second is that it was historically specific—whichever 
faction of elites was able to capture the governorship alienated the elites 
in different networks, as the former monopolized patronage opportuni-
ties. For this question, there is no pressing need to come to closure on our 
decision. Data is difficult to bring to bear on the question; the participants 
are long dead, and written statements of motivation are suspect. Each 
new bit of analysis brought by adherents of one theory can push the prop-
erty line a bit further in the other direction, as it were.

But why isn’t the same thing true if we are deciding, say, whether or 
not to decriminalize cocaine use? Either we do or we don’t (cf. Peirce 1985 
[1865–1866], “Logic Notebook,” 339). So we should assess the evidence at 
hand, and whichever way it points, that’s the way we should act, right? 
Unfortunately, this way of thinking about the issue is misleading, and 
here I’d like to review the identical problem as it defeated a number of 
early theories of probability (and I want to rely on C. S. Peirce’s masterful 
work here).

Imagine we are hoping to test whether education affects income. We 
might think, well, either education causes income or it does not. Which-
ever side has the most evidence is the side I will pick. And (to use Bayes-
ian terminology) you might think that you should therefore assume that 
your prior estimate of the probability of “no effect” is .5. But rephrase 
this as “I wonder whether the effect of education on income is precisely 
zero.” Then the a priori chance of a zero effect is vanishingly small, so 
small that you’d have to put a rather crazy distribution on the priors to 
avoid it being completely unnecessary to carry out any research at all, be-
cause nothing could shake your commitment to a non-zero effect. Peirce 
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pointed out that a number of previous attempts to mathematize proba-
bility had foundered on this problem, confusing our ignorance regarding 
one particular enunciation of a question—such as, “will the die turn up a one 
or not?”—with a defensible assignment of probabilities. We may indeed 
be completely unsure as to the next roll, argued Peirce, but the only stable 
denominator for the construction of a probability is not the number of 
alternatives we happen to be thinking about, but the number of possible 
states of the world.13

There are more than two options for drug policy. Whenever we take our 
own preferred one, and put it up against all others, we’re coming up with 
an incredibly overblown estimate of its probability, just like a would-be 
Bayesian who claimed that the prior probability of rolling a 1 versus a non-1  
in a conventional die was 1/2. That said, we can make the inverse error—
rather than using our interest in one particular option to push it to the 
front, as in this example of drug policy, we use our interest to push it off 
the table completely! How do we do this? We confuse our failure to reject a 
null hypothesis with our having established it. For example, as we’ll see in 
chapter 3, it’s quite true that, as many statistical methodologists now em-
phasize, observational studies often can’t really identify putatively causal 
effects of environmental factors in the presence of strong selectivity. That 
fact can be used to deny the claim to make a policy to affect some out-
come. But just as the capacity to reject the null hypothesis in one data 
set doesn’t mean that the hypothesis held by the investigator is demon-
strated to be true, so the failure to reject doesn’t mean it’s false. In many 
cases, the failure to reject the null hypothesis comes not because our re-
sults show that the true effect is close to zero, but because they simply tell 
us that our estimates are extremely imprecise. If the data is saying “this 
effect could be zero, or it could be very, very strong indeed,” it’s irrespon-
sible for us to look at the data, and then turn around and tell people, “sta-
tistical analysis demonstrated that there was no effect.”

How do we balance these two different errors? First, weak statistical 
evidence shouldn’t lead us to throw out our belief in processes that we 
have other sorts of evidence for—even if that evidence is of the kind that 
doesn’t qualify as social science, it’s still evidence (for example, personal 
experience, hearsay, common sense—all of which we’d like to improve 
upon, but none of which we can live without).

Second, I would suggest that we will want to rely more and more on 

13. For this reason, our conclusions can be changed depending on how we populate our 
set of possibilities: if, instead of considering three hypotheses, A, B and C, we divide A 
into two variants, A1 and A2, many methods will now give A = A1 ⋃ A2 more a priori 
weight!
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Bayesian approaches, in which we consider which model among a set to 
prefer, when our problems are more like civil ones, and more on classical 
approaches when our problems are more like criminal ones. And most im-
portant, what we want is to move to situations in which civil understand-
ings are appropriate. That means that we, as a scientific community, have 
narrowed down the set of possible alternatives to a manageable number, 
and we are doing different types of research to assess the relative weight 
of the evidence for each. Where we aren’t in that situation, either because 
there are far too many possibilities (put differently, we don’t really know 
much) or because we are proposing some very new theory, criminal stan-
dards—and therefore classical statistics—are more appropriate. Because 
this is rapidly becoming a minority position, I’d like to defend it explicitly.

A Mindful Defense of Mindlessness

If you’ve ever read Evans-Pritchard’s (1974 [1956]) book on Nuer Religion—
and you should if you haven’t!—you’ll be familiar with a poison oracle. 
This oracle, like many others, is a way of taking luck and using it to make 
a difficult binding decision. Many societies do this where there is an im-
portant matter of life and death and no one can really be sure what is the 
right thing to do. In such cases, sometimes using a Magic 8-Ball turns out 
to be a better way of making the decision than trying to think it through. 
At least then no one is responsible for making a really bad decision.

This particular oracle involves preparing a special poison in a dose that 
is as likely as not to kill a fowl. The bird is made to ingest the poison. You 
ask it a question. It answers by dying or living. Think of this as the equiva-
lent to running a regression and getting a significant or non-significant 
p value. It is a ritual that tells us whom (or, in our version, whose career) 
we should go off and kill.

There are all sorts of good arguments against using statistical signifi-
cance as a criterion. Most impressively, the American Statistical Associa-
tion recently came out with a strongly worded rejection of the use of such 
tests for the purposes of making claims (see Wasserstein and Lazar 2016). 
The arguments against are pretty good—it describes a practice we don’t 
actually carry out (one-sided tests) to solve a problem we rarely have (re-
jecting the inference that a null hypothesis holds in the population). The 
arguments for are a lot weaker. If that’s so, how can I defend it? Easy. If 
I had reason to think that the poison oracle has a non-zero correlation 
with the true answer, and I couldn’t think of anything better, I’d say we 
should use that.

It’s for this reason, when we are conducting research that needs to 
be judged according to a criminal standard, I think it makes sense to use 
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p-values in the old-style. The virtue of the p-value is that it is arbitrarily 
rigid. There are two findings, one with p-value = .0499999 and the other 
with p-value = .0500000. Accept the first, reject the second. Why? Be-
cause social science is a discipline that does not produce technology (the 
way physics produces refrigerators), we cannot be trusted to bargain with 
nature.14 We need formulae like this, at least for the everyday, run-of-
the-mill research that we are going to do. We should increase the rigidity 
and formulaic nature of this side of our work—just we should decrease the 
rigidity and formulaic nature of our work when it can be judged according 
to civil standards of proof.

In the civil understanding, we have a set of researchers who know what 
the relevant possible interpretations are. They use the compiled data in 
effect to bargain with each other about which to accept. In the criminal 
understanding, each researcher is out on her own . . . trying to bargain not 
with nature but only with herself. We have had too much sophistication, 
special pleading, bargaining, and “nuance.” We need more constraint on 
our thinking, because we have far too many false positives. If you have a 
finding with a significance of p = .07, even if you have a story for why it’s 
still something worth investigating, I’m going to counsel moving on to 
something more robust. And if you want to bargain with me I’ll sit it out 
with the same glazed smile I use on the Maoists on Telegraph Avenue. 
Whatever.

Of course, you should put learning from your data above conducting 
tests. And that means I don’t endorse the orthodox view of how to in-
terpret the p-values. The statistics behind these are usually for a single 
test you have run on data you have not peeked at. We never do that, and 
you never should. When we are exploring, we might use the p-value as a 
rough guide, but there are other ones (raw numbers, percentages, change 
in slopes, and sub-sample sizes). So in data exploration, you should use 
the p-values the way meteorologists use their models—as one bit of in-
formation among others.

However, when we’re done, we should have something that we believe 
in, and that is also significant according to conventional standards. It’s 
quite true that because we haven’t done the one-shot, no peeking, test, 
the p-value isn’t quite right—our procedures are too liberal. But as if to 

14. And this leads to a serious ethical issue about borderline results, which I explore in 
our conclusion. It also leads to what is called “p-hacking,” where analysts tweak their 
models to get that .053 p-value down to .049. I think my emphasis on testing the im-
plications of an interpretation is the best counter, but you should also know, it’s pretty 
common for analysts to find that nothing they do can get the p-value below .053. (Not 
that I’ve tried.)
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make up for it, we conduct two-tailed tests by convention, though we 
really have one-sided theories, and that’s being overly conservative.15

It’s worth emphasizing that this defense makes sense only for conven-
tional data analysis—where we have an omnibus data set, collected for 
general purposes, and accessible to many different researchers for replica-
tions on basically even terms (as opposed to the original researchers col-
lecting data that are already impregnated with their own assumptions). I 
certainly don’t defend the use of p-values for experimental work, like that 
done in social psychology.

To conclude, our goal is not the estimation of parameters. That is a 
means to our goal. Our goal is seeing whether there are some interpreta-
tions of the world that we can, for now, dismiss. Does that seem a bit weak 
to you? Maybe, but knowing your limitations is a big part of science. If you 
want a more inspiring vision to strive for, the (optional) coda to this chap-
ter describes the notion of mathematical sociology, which I think should 
be, if not our goal in actual practice, our orienting dream. Our reach must 
exceed our grasp, else what’s a heaven for?

Coda: A Plea for Mathematical Sociology

There are good reasons to imagine that in the current world, the field of 
statistics would be at death’s door, while mathematical sociology would 
be rising like a phoenix. Statistics as a discipline was oriented around 
issues of inference from samples, and, in a world where we have millions 
of observations, many of the issues that classical statistics was best at 
solving have retreated in importance. In contrast, the penetration of so-
cial network analysis by physicists has led to an infusion of much more 
rigorous mathematics to a number of the questions that historically were 
central to mathematical sociology.

Yet not only is mathematical sociology not reviving, I think it’s in dan-
ger of completely being forgotten. You, dear reader, may not even under-
stand what I am talking about. That is, you won’t understand the opposition 
between the two approaches.

Mathematical sociology is about looking for the mathematics that 
(might) underlie social processes and structures. It’s perhaps a quixotic 
quest for a true social science. The great breakthroughs here were Levi-

15. There should be no actual two-tailed tests, which makes around as much sense as 
Newton saying that his theory is right if objects either accelerate constantly downwards 
or constantly upwards. Pathological research can be identified by tests of a set of coeffi-
cients that are allowed to go in either direction, and get a story no matter which way. 
But using the statistics as if we were conducting two-sided tests has turned out to be a 
good practice.



[26]	 C ha  p t e r  1

Strauss’s adoption of structural models, and then their mathematization 
by Andre Weil and Harrison White (as well as other attempts by people 
like George A. Lundberg and of course George K. Zipf!); the later work of 
White and collaborators like Scott Boorman and Ronald Breiger, and their 
collaborators Philippa Pattison and her student Carter Butts. Also impor-
tant is the work by Paul Lazarsfeld on static models and his student James 
Coleman on processes.

I’ll give one image for mathematical sociology—it’s a lot like early crys-
tallography. Before the age of the electron microscope, chemists tried to 
understand something about the structure of molecules by growing them 
as crystals. Water forms hexagonal crystals (that’s why snowflakes look 
like they do), salt forms rectangular prisms, and so on. To make such crys-
tals with recognizable forms, you generally need a pure solution of the 
molecule in question. If someone were to criticize you because you didn’t 
have a good “random” sample of naturally occurring salt water, say (some 
from the Atlantic, some from the Pacific, some from the Indian Ocean, 
and so on), you would look at them as if they were crazy, right? It’s like 
Allen Barton’s (1968) analogy of an anatomist who takes a random sample 
of cells from an organism and studies them all together. But we often 
allow statisticians to get us to do just that—to make it hard for us to see 
structure (if there is any) because we need to make inferences. That’s their 
job, and kudos to them. But they’re not really there to solve our problems 
of having a social science.

A statistician, as I’ve said, can help you figure out whether you have cor-
rectly inferred the returns to education on average for American men. You 
can estimate that perhaps to four significant digits. But it’s not much to 
build a social science on. Why? Because if we divide the country at the Mis-
sissippi, the chances that we’ll get the same values West and East are pretty 
low. You might suggest that there are then two “isotopes” of American 
men; but if we split each of these again, we’ll get four different numbers, 
and so on. These numbers are artifacts, in other words; they are the out-
comes of our conventional manipulations of measurements. They aren’t 
actually numbers that reflect something like invariants; rather, they are 
the result of throwing together all the real invariants which we do not under-
stand and which might well be mathematizable (though not necessarily para-
meterizable). Remember: statistics gets you the best estimates of parame-
ters—whether those are meaningless or not is a totally different story.

Speaking of stories, let me give you one involving a nice beef between 
two of my heroes, Harrison White and Leo Goodman. It had to do with a 
seemingly arcane issue, namely how to model the distribution of group 
sizes that might spontaneously form in a larger setting (such as conver-
sational groups at an embassy party shortly before an Arnold Swarzeneg-
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ger character crashes through the window in a tank). This nicely encap-
sulates the difference in habitus between mathematical sociologists and 
statisticians, and why statisticians can always win. White (1962) began 
from statistical mechanics and developed a rigorous approach to trying to 
solve this problem, one that built on and transcended some earlier work 
done by Coleman, by the way. But Goodman (1964) showed that there 
were problems in the way in which White had approached this.16 And the 
most damning issue was that White had treated the expected number of 
singletons as a parameter, as opposed to a random variable. That is, he had 
ignored the fact that it had a sampling variance.

Now I get it, and I basically am convinced, or convinced enough. But 
a mathematical sociologist wants to be able to mathematize this group, 
with its number of isolated people right here, right now. If that doesn’t 
do justice to the population of all possible sets of groups, then so be it. 
Mathematical sociology isn’t about inference in this sense of sampling, 
and we shouldn’t let statisticians come in and smash the more delicate 
constructions that we need to make. Or, at least, that would be true if 
mathematical sociologists were still making models of structure.

But instead, mathematical sociology began to fall apart with the in-
flux of simulation work, which encouraged a lot of usually young, usually 
male, usually students to consider themselves mathematical sociologists 
because they were using a computer. ’Tain’t so, not nohow. But this stuff 
flooded the journals, pushing out mathematical work, which is much 
harder to review. And these people were unable to do that sort of review, 
so even as the mathematical rigor of much work in sociological fields in-
creased, there was less exciting mathematical sociology. But mathemati-
cal sociology should be the grail that we are searching for—it may be a 
myth, but if we stop believing that there are mathematical properties of 
social interaction, we should leave off all this number crunching (for an 
example, see Newman, Strogatz, and Watts 2001).

And so in this book, I’m going to be talking about how to get reason-
able parameters, but my position—strongly—is that if there is a mathe-
matical order to social life, we should uncover it wherever it appears, and 
if there isn’t, we shouldn’t fetishize inferential models; rather, we should 
use whatever we can to rule out wrong ideas . . . at least, the ones that we 
should rule out. We’re going to try to get some principles to do this in the 
next few chapters.

16. Oh, did I mention that White also developed a theoretically defensible approach to 
modeling mobility tables, again, based on statistical mechanics, and Goodman blew 
him out of the water with the loglinear system, which had no real theoretical ground-
ing but behaved much better statistically?


